2,405 research outputs found

    Properties of Mesoscopic Hybrid Superconducting Systems

    Full text link
    In this paper we review several aspects of mesoscopic hybrid superconducting systems. In particular we consider charge and heat transport properties in hybrid superconducting-metal structures and the effect of charging energy in superconducting nanostructures.Comment: 27 pages, 8 figure

    Huge nonequilibrium magnetoresistance in hybrid superconducting spin valves

    Full text link
    A hybrid ferromagnet-superconductor spin valve is proposed. Its operation relies on the interplay between nonequilibrium transport and proximity-induced exchange coupling in superconductors. Huge tunnel magnetoresistance values as large as some 10^6% can be achieved in suitable ferromagnet-superconductor combinations under proper voltage biasing. The controllable spin-filter nature of the structure combined with its intrinsic simplicity make this setup attractive for low-temperature spintronic applications where reduced power dissipation is an additional requirement.Comment: 4 pages, 4 figure

    Ultra-low dissipation Josephson transistor

    Full text link
    A superconductor-normal metal-superconductor (SNS) transistor based on superconducting microcoolers is presented. The proposed 4-terminal device consists of a long SNS Josephson junction whose N region is in addition symmetrically connected to superconducting reservoirs through tunnel barriers (I). Biasing the SINIS line allows to modify the quasiparticle temperature in the weak link, thus controlling the Josephson current. We show that, in suitable voltage and temperature regimes, large supercurrent enhancements can be achieved with respect to equilibrium, due to electron ``cooling'' generated by the control voltage. The extremely low power dissipation intrinsic to the structure makes this device relevant for a number of electronic applications.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Hybrid superconducting quantum magnetometer

    Full text link
    A superconducting quantum magnetometer based on magnetic flux-driven modulation of the density of states of a proximized metallic nanowire is theoretically analyzed. With optimized geometrical and material parameters transfer functions up to a few mV/Phi_0 and intrinsic flux noise ~10^{-9}Phi_0 Hz^{-1/2} below 1 K are achievable. The opportunity to access single-spin detection joined with limited dissipation (of the order of ~ 10^{-14} W) make this magnetometer interesting for the investigation of the switching dynamics of molecules or individual magnetic nanoparticles.Comment: 6 pages, 6 color figures, added calculation of the Josephson current, published versio

    Mesoscopic supercurrent transistor controlled by nonequilibrium cooling

    Full text link
    The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal metal-insulator-superconductor (SINIS) mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a π\pi-junction are striking features leading to a fully tunable structure. The role of the degree of nonequilibrium, temperature, and materials choice as well as features like noise, switching time, and current and power gain are also addressed.Comment: 8 pages, 9 figures, submitted to Journal of Low Temperature Physic

    Tailoring Josephson coupling through superconductivity-induced nonequilibrium

    Get PDF
    The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal metal-insulator-superconductor (SINIS) mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a π\pi-junction are striking features leading to a fully tunable structure.Comment: 4 pages, 4 figure

    Superconductors as ideal spin sources for spintronics

    Full text link
    Spin-polarized transport is investigated in normal metal-superconductor (NS) junctions as a function of interface transmissivity as well as temperature when the density of states of a superconductor is Zeeman-split in response to an exchange field (h_exc). Similarly to the "absolute spin-valve effect" predicted by D. Huertas-Hernando et al. [Phys. Rev. Lett. 88, 047003 (2002)] in superconducting proximity structures, we show that NS junctions can be used to generate highly spin-polarized currents, in alternative to half-metallic ferromagnets. In particular, the spin-polarized current obtained is largely tunable in magnitude and sign by acting on bias voltage and h_exc. While for tunnel contacts the current polarization can be as high as 100%, for transparent junctions it is dominated by the minority spin species. The effect can be enhanced by electron "cooling" provided by the superconducting gap.Comment: 4 pages, 4 color figures, published versio

    Ultra-efficient Cooling in Ferromagnet-Superconductor Microrefrigerators

    Full text link
    A promising scheme for electron microrefrigeration based on ferromagnet-superconductor contacts is presented. In this setup, cooling power densities up to 600 nW/μ\mum2^2 can be achieved leading to electronic temperature reductions largely exceeding those obtained with existing superconductor-normal metal tunnel contacts. Half-metallic CrO2_2/Al bilayers are indicated as ideal candidates for the implementation of the device.Comment: 9 pages, 3 figures, submitted to Applied Physics Letter

    Crossed Andreev reflection-induced magnetoresistance

    Full text link
    We show that very large negative magnetoresistance can be obtained in magnetic trilayers in a current-in-plane geometry owing to the existence of crossed Andreev reflection. This spin-valve consists of a thin superconducting film sandwiched between two ferromagnetic layers whose magnetization is allowed to be either parallelly or antiparallelly aligned. For a suitable choice of structure parameters and nearly fully spin-polarized ferromagnets the magnetoresistance can exceed -80%. Our results are relevant for the design and implementation of spintronic devices exploiting ferromagnet-superconductor structures.Comment: 5 pages, 4 figures, final published versio
    • …
    corecore